"""
Sequence-to-Sequence Modeling with nn.Transformer and TorchText
===============================================================

This is a tutorial on how to train a sequence-to-sequence model
that uses the
`nn.Transformer <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer>`__ module.

PyTorch 1.2 release includes a standard transformer module based on the
paper `Attention is All You
Need <https://arxiv.org/pdf/1706.03762.pdf>`__. The transformer model
has been proved to be superior in quality for many sequence-to-sequence
problems while being more parallelizable. The ``nn.Transformer`` module
relies entirely on an attention mechanism (another module recently
implemented as `nn.MultiheadAttention <https://pytorch.org/docs/master/nn.html?highlight=multiheadattention#torch.nn.MultiheadAttention>`__) to draw global dependencies
between input and output. The ``nn.Transformer`` module is now highly
modularized such that a single component (like `nn.TransformerEncoder <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformerencoder#torch.nn.TransformerEncoder>`__
in this tutorial) can be easily adapted/composed.

.. image:: ../_static/img/transformer_architecture.jpg

"""

######################################################################
# Define the model
# ----------------
#


######################################################################
# In this tutorial, we train ``nn.TransformerEncoder`` model on a
# language modeling task. The language modeling task is to assign a
# probability for the likelihood of a given word (or a sequence of words)
# to follow a sequence of words. A sequence of tokens are passed to the embedding
# layer first, followed by a positional encoding layer to account for the order
# of the word (see the next paragraph for more details). The
# ``nn.TransformerEncoder`` consists of multiple layers of
# `nn.TransformerEncoderLayer <https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer>`__. Along with the input sequence, a square
# attention mask is required because the self-attention layers in
# ``nn.TransformerEncoder`` are only allowed to attend the earlier positions in
# the sequence. For the language modeling task, any tokens on the future
# positions should be masked. To have the actual words, the output
# of ``nn.TransformerEncoder`` model is sent to the final Linear
# layer, which is followed by a log-Softmax function.
#

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class TransformerModel(nn.Module):

    def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
        super(TransformerModel, self).__init__()
        from torch.nn import TransformerEncoder, TransformerEncoderLayer
        self.model_type = 'Transformer'
        self.pos_encoder = PositionalEncoding(ninp, dropout)
        encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
        self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.ninp = ninp
        self.decoder = nn.Linear(ninp, ntoken)

        self.init_weights()

    def generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def init_weights(self):
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src, src_mask):
        src = self.encoder(src) * math.sqrt(self.ninp)
        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, src_mask)
        output = self.decoder(output)
        return output


######################################################################
# ``PositionalEncoding`` module injects some information about the
# relative or absolute position of the tokens in the sequence. The
# positional encodings have the same dimension as the embeddings so that
# the two can be summed. Here, we use ``sine`` and ``cosine`` functions of
# different frequencies.
#

class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


######################################################################
# Load and batch data
# -------------------
#


######################################################################
# This tutorial uses ``torchtext`` to generate Wikitext-2 dataset. The
# vocab object is built based on the train dataset and is used to numericalize
# tokens into tensors. Starting from sequential data, the ``batchify()``
# function arranges the dataset into columns, trimming off any tokens remaining
# after the data has been divided into batches of size ``batch_size``.
# For instance, with the alphabet as the sequence (total length of 26)
# and a batch size of 4, we would divide the alphabet into 4 sequences of
# length 6:
#
# .. math::
#   \begin{bmatrix}
#   \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z}
#   \end{bmatrix}
#   \Rightarrow
#   \begin{bmatrix}
#   \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} &
#   \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} &
#   \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} &
#   \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix}
#   \end{bmatrix}
#
# These columns are treated as independent by the model, which means that
# the dependence of ``G`` and ``F`` can not be learned, but allows more
# efficient batch processing.
#

import io
import torch
from torchtext.utils import download_from_url, extract_archive
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip'
test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url))
tokenizer = get_tokenizer('basic_english')
vocab = build_vocab_from_iterator(map(tokenizer,
                                      iter(io.open(train_filepath,
                                                   encoding="utf8"))))

def data_process(raw_text_iter):
  data = [torch.tensor([vocab[token] for token in tokenizer(item)],
                       dtype=torch.long) for item in raw_text_iter]
  return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))

train_data = data_process(iter(io.open(train_filepath, encoding="utf8")))
val_data = data_process(iter(io.open(valid_filepath, encoding="utf8")))
test_data = data_process(iter(io.open(test_filepath, encoding="utf8")))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def batchify(data, bsz):
    # Divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)

batch_size = 20
eval_batch_size = 10
train_data = batchify(train_data, batch_size)
val_data = batchify(val_data, eval_batch_size)
test_data = batchify(test_data, eval_batch_size)


######################################################################
# Functions to generate input and target sequence
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#


######################################################################
# ``get_batch()`` function generates the input and target sequence for
# the transformer model. It subdivides the source data into chunks of
# length ``bptt``. For the language modeling task, the model needs the
# following words as ``Target``. For example, with a ``bptt`` value of 2,
# we’d get the following two Variables for ``i`` = 0:
#
# .. image:: ../_static/img/transformer_input_target.png
#
# It should be noted that the chunks are along dimension 0, consistent
# with the ``S`` dimension in the Transformer model. The batch dimension
# ``N`` is along dimension 1.
#

bptt = 35
def get_batch(source, i):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].reshape(-1)
    return data, target


######################################################################
# Initiate an instance
# --------------------
#


######################################################################
# The model is set up with the hyperparameter below. The vocab size is
# equal to the length of the vocab object.
#

ntokens = len(vocab.stoi) # the size of vocabulary
emsize = 200 # embedding dimension
nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 2 # the number of heads in the multiheadattention models
dropout = 0.2 # the dropout value
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device)


######################################################################
# Run the model
# -------------
#


######################################################################
# `CrossEntropyLoss <https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__
# is applied to track the loss and
# `SGD <https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD>`__
# implements stochastic gradient descent method as the optimizer. The initial
# learning rate is set to 5.0. `StepLR <https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR>`__ is
# applied to adjust the learn rate through epochs. During the
# training, we use
# `nn.utils.clip_grad_norm\_ <https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_>`__
# function to scale all the gradient together to prevent exploding.
#

criterion = nn.CrossEntropyLoss()
lr = 5.0 # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

import time
def train():
    model.train() # Turn on the train mode
    total_loss = 0.
    start_time = time.time()
    src_mask = model.generate_square_subsequent_mask(bptt).to(device)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i)
        optimizer.zero_grad()
        if data.size(0) != bptt:
            src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device)
        output = model(data, src_mask)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()

        total_loss += loss.item()
        log_interval = 200
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches | '
                  'lr {:02.2f} | ms/batch {:5.2f} | '
                  'loss {:5.2f} | ppl {:8.2f}'.format(
                    epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0],
                    elapsed * 1000 / log_interval,
                    cur_loss, math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()

def evaluate(eval_model, data_source):
    eval_model.eval() # Turn on the evaluation mode
    total_loss = 0.
    src_mask = model.generate_square_subsequent_mask(bptt).to(device)
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i)
            if data.size(0) != bptt:
                src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device)
            output = eval_model(data, src_mask)
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)

######################################################################
# Loop over epochs. Save the model if the validation loss is the best
# we've seen so far. Adjust the learning rate after each epoch.

best_val_loss = float("inf")
epochs = 3 # The number of epochs
best_model = None

for epoch in range(1, epochs + 1):
    epoch_start_time = time.time()
    train()
    val_loss = evaluate(model, val_data)
    print('-' * 89)
    print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
          'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                     val_loss, math.exp(val_loss)))
    print('-' * 89)

    if val_loss < best_val_loss:
        best_val_loss = val_loss
        best_model = model

    scheduler.step()


######################################################################
# Evaluate the model with the test dataset
# -------------------------------------
#
# Apply the best model to check the result with the test dataset.

test_loss = evaluate(best_model, test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
    test_loss, math.exp(test_loss)))
print('=' * 89)
